第(1/3)页 在【超限序数】这一数学理论体系中,存在着所谓的三类条件。 一、反自反: 即,如果a≤b,且b≤a,则a=b。 二、传递性: 即,如果a≤b,且b≤,则a≤。 三、完备性: 若a≤b或者b≤a,那么便不存在无法比较的情况。 事实上,一切知性生灵所知的自然数范畴到实数范畴内的‘≤’都符合这些性质。 这些性质,也正是奠定各类集合间【全序关系】的基础。 至于所谓的全序关系,便是集合层面上的比大小操作。(详见580章) 任意两个良序集合,假若可以建立一一对应关系。 那么,就可以说其是【同序数】。 其实不仅仅是序数,在庞大的数学领域中,亦存在着大量类似通过某种一一对应的变换,来建立两个对象性质相似性的定义。 其名称,也与‘同序数’这一概念颇为近似。 譬如同构,同态等等等等。 如果要将【同序数】这一概念,再进行一番更为细致也更为形象的比喻性描述,那么就可以用【银河霸主】这一大境界来作例子。 在银河霸主大境之中,若以实力高低为凭,从最低的一阶开始一路往上数。 二阶、三阶、四阶……一直数到最高的十阶顶尖霸主。 那么这套力量等级体系,就共计拥有十个阶数。 其按照实力高低,从小到大就构成了一个良序集。(良序集定义详见580章) 与此同时,自然数从1到10也能构成一个良序集。 显然,银河霸主一~十阶,与自然数1~10,是可以一一对应的。 并且这两者的对应结构,也是保持了顺序的。 所以,就可以说【银河霸主】等级体系,与自然数1到10的这个集合,为【同序数】。 也可以更简单的说成,序数是10。 由此推及到更大的层次,那么全体自然数,显然也能构成一个全序集,或者说一个良序集。 只是,其并非有限集,而是无穷集。 这个无穷集,就是最小的超限序数w,亦是穆苍初登无穷之际的实力层次。 当然,只是祂初登无穷时的层次。 至于现在的穆苍,则早已远远凌驾在了w级数之上不知凡几。 可是w……就已然是切切实实的无穷大。 对于无穷大,还能怎样超越呢? 答案是,可以超越。 只不过,需要打开脑洞,展开一场思维风暴。 开始! 提问,怎样在自然数集合w中,通过增加一个元素,来得到一个更高阶更巨大的超限序数呢? 乍一想,这好像是无法做到的。 因为在自然数集合w中,已经存在了无穷多个元素。 若想要再加入一个元素,同时还要保持w良序集的性质,这又该往哪里加呢? 先不要思考答案,可以将这个问题翻转一下。 翻转之后即是……能否从全体自然数w中,拿走足够多的元素,用来构造一个更小的无穷序数呢? 只要稍微思考一下,便会知晓这一问题和【希尔伯特旅馆悖论问题】十分相似,或者说大差不差,都属于是对无穷集合的思考与讨论。 总之,即便从全体自然数集合w中拿走任意多的元素,可只要还剩下无穷多个元素,那么w便还是与全体自然数同序数。 既然问题已经翻转过了,那么现在,就将结论也翻转一次吧。 翻转之后便是,往w中添加任意多元素,是毫无意义的。 即便加了,得到的也依然是与自然数集合同等大小的序数集。 所以,现在应该要怎么做呢? 要怎样做才能突破w,到达那更高阶的无穷大层次呢? 很简单,在全体自然数【末尾】,添加一个元素。 可是,全体自然数有无穷多个,要如何操作,才能在其按照常理根本就不可能存在的所谓【末尾】,添加上一个元素呢? 注意,这就是【超限序数】理论中的关键点。 至关重要! 如果能够理解这一关键点,能够理解如何〖在全体自然数末尾添加一个元素〗这一操作。 第(1/3)页